
Containerization with Docker exercise

In this exercise we will create and run a Docker container for an example R project. The
project is the same that is created in the first workflow exercise, however to save time or in
case you haven’t completed this exercise we will start with the finished output from it.

Warning: Docker is a complex software and getting Docker Desktop running on different
machines is not always smooth. For example, I had no problem getting it running on my
desktop computer but my work laptop did not have the capabilities. If you do run into issues
there is good support available online but also asking for help from your IT department may
be a good idea.

Step 1: Download the resources

• Click here to download the resources for the exercise: Download resources for exercise

• Unzip the downloaded file and move the folder to a location on your computer where
you can easily find it.

Step 2: Download Docker

• Download Docker Desktop for your operating system from the Docker website.

• Once downloaded run the installer like you would for other software. If your computer
is managed by your institution or your employer you will likely need an admin account
to run the installer and you may need to restart your computer after installation.

• While you are running the installer it is useful to make a Docker account. This is not
necessary but can be useful for managing your containers. You can also sign in with
your GitHub account.

Step 3: Open Docker desktop

• Open the Docker desktop app. If the app does not open you may need to yourself to the
program user-group on your computer. This is a common issue on Windows machines
because only the admin account is added to the user-group by default. To add yourself
to the user-group search computer management in the start menu and right-click and
select to run it with admin privileges. Then navigate to Local Users and Groups ->
Groups -> Docker Users. Right click on Docker Users and select Add to Group. Then
add your user account to the group.

1

Rproj_zenodo_exercise.qmd#sec-Rproj_zenodo_exercise
https://www.docker.com/products/docker-desktop

• Once the Docker desktop app is open it should automatically start the docker engine
which is the software that runs the containers. In the bottom left of app window you
will see the status of the engine.

1: Docker Engine status in app

Alternatively if you look in the system tray on Windows or the top menu bar on Mac. You
will see an icon of the Docker whale logo and if you click on this you can see the status of the
engine.

2: Docker Engine status in system try

2

Step 4: Creating the Dockerfile

• Open Rstudio and navigate to the folder you downloaded in step 1.
• Create a new R script and name it Create_Dockerfile.R.
• Install the Dockerfiler package: install.packages("dockerfiler").
• Add the following code to the script and replace the entries with your details:

Load dockerfiler package
library(dockerfiler)

Get your R version to select a base image to use for your image/container
R.Version()$version.string

Create a dockerfile template object using the Dockerfile class from the
dockerfiler package and specify your version of R in the base image name
my version is 4.3.1 hence the base image is rocker/r-ver:4.3.1
but you should replace the end of this string with your version number from

above↪

RiceFarm_dock <- Dockerfile$new(FROM = "rocker/r-ver:4.3.1")

Add maintainer information (replace with your details)
RiceFarm_dock$MAINTAINER("Your_name", "Your_email")

By default docker images contain a home directory and because our project
is simple we will move the files we need there

Copy the data directory
(1st argument is the source, 2nd is the destination in the container)
RiceFarm_dock$COPY("/Data", "/home/Data")

Copy the scripts directory
RiceFarm_dock$COPY("/Scripts", "/home/Scripts")

Copy the master script
RiceFarm_dock$COPY("/RiceFarm_master.R", "/home")

For our project we need "ggplot2" and "stringr" packages
We could try to find a base image on Rocker that has these installed
But because we are not using lots of packages lets just install them in the

container↪

Note that the R commands are wrapped in `r()` which is a helper function
from dockerfiler↪

3

that then wraps the command in the correct syntax for the Dockerfile
RiceFarm_dock$RUN(r(install.packages("ggplot2")))
RiceFarm_dock$RUN(r(install.packages("stringr")))

Add the command to run the master script
Note the use of `Rscript` which is the command line tool included with R to

run scripts↪

RiceFarm_dock$CMD("Rscript /home/RiceFarm_master.R ")

Save the Dockerfile
RiceFarm_dock$write()

Create dir in the host directory to receive the results from container
dir.create("/output")

• After running this code you will see that a Dockerfile has been created in the directory
where you downloaded the resources.

Step 5: Creating the Docker image

• The Docker command build is used to create a Docker image from the instructions
contained in your Dockerfile.

• The build command should be called through a Command Line Interface (CLI) such as
the terminal in Rstudio or the CLI of your operating system (e.g Command Prompt for
Windows).

• In Rstudio switch to the terminal tab next to the console pane:

4

3: Rstudio terminal

• Run the following command: docker build -t ricerarm_01 . Note: The -t flag is
used to tag the image with a name (in this case we are using ricerarm_01). The .
at the end of the command is used to specify the current directory as the location of
Dockerfile that is to be used.

• After running the command you will see the Docker engine pulling the base image from
the Docker Hub and then building the image. This process can take a few minutes
depending on the size of the base image and the number of packages you are installing.
The output in the terminal will look something like this:

5

4: Docker build output in terminal

• Once the image has been built you can check that it is there by running the command
docker images in the terminal. This will show you a list of all the images on your
computer. You should see the image you just created in the list.

• Alternatively you can check the image in the Docker desktop app. You will see the image
in the list of images on the left of the app window. You can inspect the image by clicking
on it and see the details of the image:

5: Docker build output in app

Step 6: Running the Docker container

• The Docker command run is used to run a container from an image.

• This can be done through the CLI: In the terminal tab in Rstudio run the following
command: docker run ricerarm_01.

• Or in the Docker desktop app: Click on the image you want to run and then click
the run button in the top right. This will open a window where you can specify the
settings for the container but for now you should just run the container with the default
settings.

6

6: Docker images in app

• After running the container you can also check the status of the container in the Docker
desktop app. You will see the container in the list of containers on the left of the app
window. You can inspect the container by clicking on it and see the details of the
container.

7: Docker containers in app

Step 8 Copying files from the container to the host

• One way to access the files created inside your container is to mount a directory from
your host machine to a directory in the the container. This is done using the -v flag
in the docker run command. However, this is not so effective in the example container
we are using because the code is completed in a matter of seconds and after that the
container is exited.

• Instead we will copy the output files from the container using the CLI. To do this you
need to know the container ID of the container you want to copy files from. You can
get the container ID by running the command: docker ps -a in the terminal, this will
show you a list of all the containers on your computer and in the terminal output you
can copy the ID:

7

8: Docker container ID in terminal

• Now you have the ID in the terminal run the command: docker cp <Container
ID>:/home/Output/Visualisations/Regional_size_summary_bar.png ./Output/
and replace the <Container ID> with the ID you copied. The first argument
/home/Output/Visualisations/Regional_size_summary_bar.png is the path to the
file you want to copy in the container. The second argument ./Output/ is the path to
the directory to copy the file to on your host machine, again this is a relative path and
the . specifies the current directory. After running the command you should a message
printed in the terminal and the file should be copied to the directory you specified:

9: Docker copy output in terminal

That’s it, you have successfully created a Dockerfile, Docker image and container, run your
code inside the container and copied the output back to your host machine. If you were to
share the Dockerfile with someone else they could build the image and run the container on
their machine and get exactly the same results as you. Obviously this is a very simple example
but the same principles apply to more complex projects where reproducibility becomes more
challenging.

8

	Containerization with Docker exercise
	Step 1: Download the resources
	Step 2: Download Docker
	Step 3: Open Docker desktop
	Step 4: Creating the Dockerfile
	Step 5: Creating the Docker image
	Step 6: Running the Docker container
	Step 8 Copying files from the container to the host

