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1. Introduction to Land use change Cellular Automata models 
2. What are the benefits of variable(feature) selection
3. Applied example: Filter and embedded methods combined with 
Random Forests 
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Land Use Land Cover change Cellular Automata (LULCC-CA)

What:  
• Spatially explicit, ‘patterns-based’ approach to modelling LULCC

• Study area abstracted to cellular grid of LULC states

• LULCC simulated over discrete time with cells changing state on the basis of:

• Previous state 
• Surrounding cells states: Neighborhood effect
• Transition models encapsulating relationship between LULC transitions and driving variables (features)

LULC t= 0 LULC t= 1

tPj,i = tSj,i + tAj,i + tNj,i

Cellular transition 
potential:

Quantities of change

iEMSs, 01.07.2022 Tobler 1979; R White and Engelen 1997; Roger White, Uljee, and Engelen 2012



Transition modelling in LULCC-CAs

• Driving variables represent an abstraction of the real-world processes of land use change
• Calibrated and validated on historical data and then used for future prediction
• Trend in field :

Rules-based or 
linear 

equations

Increasing complexity :
o Logistic Regression
o Neural Networks
o Support Vector 

Machines
o Random Forests

iEMSs, 01.07.2022 Kolb et al. 2013; Li and Yeh 2002; Yang et al. 2008; Rodrigues and Soares-Filho 2018; Kamusoko and Gamba 2015



Transition modelling in LULCC-CAs

• Lack of transparency in model 
behavior 

• Insufficient efforts to explore 
aspects of the model 
techniques:

o Hyper-parameter tuning
o Class imbalance
o Feature selection

iEMSs, 01.07.2022  Tong and Feng 2020
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Transition modelling: Feature selection

iEMSs, 01.07.2022 Wang et al. 2016  

1. Filter 2. Wrapper 3. Embedded

• What: Selection of optimal set of features (variables/predictors) to give acceptable model performance 
whilst being representative, non-redundant and compact -> parsimonious models

• 3 approaches: 



Feature selection rationale

iEMSs, 01.07.2022 Guyon et al. 2006

Potential benefits for LULCC-CAs: 

o Model Generalizability: improved performance on unseen data 

o Reduce burden for future simulations : less variables must be extrapolated or assumed stationary

LULC t= 0 LULC t= 1

Transition 
models

Quantities 
of change

LULC t= 2

Transition 
models

Quantities 
of change

For future time points, transition models are stationary but 
require temporally dynamic variable data or assumption of 

stationarity: Problematic 

Within calibration interval historic data available 
for all variables



Applied example
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•What: Two step feature selection approach for Random Forests transition models of LULC 
change in Switzerland

•Aim: Demonstrate benefits in terms of model generalisability and parsimony

LULC transition 
datasets

Step 1: Filter based 
feature selection

Step 2: Embedded feature 
selection

Evaluate 
performance

Model



Methods: Data preparation

LULCC transition datasets:

iEMSs, 01.07.2022 Federal Office for statistics (FSO) 2021

1985

1997

2009

2018

100m raster data 
for 4 time points, 
aggregated to 10 

LULC classes

Identification of 
LULC transitions 

between time 
points: 3 change 

layers

Filtered to ∼ 35 
class-class 
transitions

Split by Swiss 
Bio-regions (6)

LULC transition 
datasets: 174-217 

per period 



Methods: Data preparation

iEMSs, 01.07.2022

Predictors grouped by category:     Accessibility and suitability vs. Neighbourhood 

Suitability/Accessibility predictors
Distance to roads

Continentality
Light

Soil pH
Soil nutrients
Soil moisture

Soil moisture variability
Soil aeration
Soil humus

Change in average population per municipality
Change in no. of employees in primary sector per municipality

Change in no. of employees in secondary and tertiary sectors per municipality
Mean elevation

Aspect
Slope

Hillshade
Noise pollution index

Distance to lakes
Distance to rivers

Annual mean temperature
Average annual precipitation

Sum of growing days above 0 degrees
Sum of growing days above 3 degrees 
Sum of growing days above 5 degrees



Methods: Neighborhood predictors

5x neighbourhood 
sizes

5 x Random matrices

x

5 x Active LULC 
classes

=

125 x 
Neighborhood

realisations  
(raster layers)

x
Settlement/urban/amenities 

Intensive agriculture
Alpine pastures

Grassland or meadows
Permanent crops

iEMSs, 01.07.2022 Roodposhti et al. 2020 



Step 1: Filter based feature selection

iEMSs, 01.07.2022

Output: Datasets with different number of remaining predictors: max of 1 neighbourhood predictor for each active 
LULC class and as many suitability and accessibility predictors that passed the <0.7 correlation cut-off.

Features predictors 
grouped categorically 

(Suitability and 
accessibility; 

neighbourhood split 
according to the active 

LULC class)  

Univariate GLMs 
produced for each 
predictor in each 

group

Pairwise Pearson’s correlation 
coefficients calculated 

iteratively with the lowest (list-
wise) variable removed until the 

subsequent correlation value 
was below a threshold of 0.7

p-values from these 
models used to 
produce ranked 

lists of predictors 
(lowest to highest) 



Step 2: Embedded feature selection

iEMSs, 01.07.2022 Deng and Runger 2013

Fit standard RF model 
and calculate normalized 
feature importance (NFI) 

scores 

Ensemble decision tree construction in GRRF: 

• Guided Regularized Random Forests (GRRF)
• Purpose: Select “compact” (non-redundant) subsets of predictors directly utilising the RF algorithm

F

• Instantiate empty 
subset (F) of features

• Features  used at tree 
nodes are added to F

tree1

V1

• At each node (V) splitting occurs as per RF with Gini Information 
gain (GI) calculated for each feature (Xj) 

• GI values modified by a penalty factor if Xj is present in F,  with 
penalty scaled by NFI

• X not included in F must have high importance to overcome 
penalization

Prior to GRRF: 



Random Forests

Modelling

iEMSs, 01.07.2022                               Boyce et al. 2002; Hirzel et al. 2006; Paegelow et al. 2018

Logistic regression

No feature 
selection

With feature 
selection

Transition datasets (n= 174-217)

Evaluate

• All models fitted on 5 replicates using 
a 70:30 split of training/test data to 
allow for independent validation

• Models evaluated using threshold and 
non-threshold metrics averaged over 
replicates: 

Model score [-1, 1] =   𝑥̅𝑥( 
norm(AUC ROC),  

Boyce index) 



Model performance

iEMSs, 01.07.2022

Bars between violins indicate significant pairwise differences between groups under the Conover's all-pairs comparisons test (*p<0.05, **p<0.01).



Model generalisability
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Model parsimony

iEMSs, 01.07.2022

RF modelsLR models

Scatter plots of the differences (∆) in the model score metric against absolute (abs) differences in the number of predictors between the models with 
feature selection and without feature selection models with linear trend line and correlation (Spearman’s) coefficient.



Conclusion

Takeaway: LULCC-CAs should include feature selection as a 
process of training transition models because it offers two 
benefits: 

• Improved model generalisability

• Moderate reduction in number of predictors for only small 
decreases in performance

Publication: 

Black, B. Grêt-Regamey, A. Van Strien, M. 2022. Improving calibration of land use change models 
through proactive validation of transition potential predictions. In preparation. 



Thank you for 
listening

I will now take 
any questions.
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Results: Feature retention
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Model performance
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– RF is generally invariant to redundant predictors so the approach is unlikely to produce better 
performing models:
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