

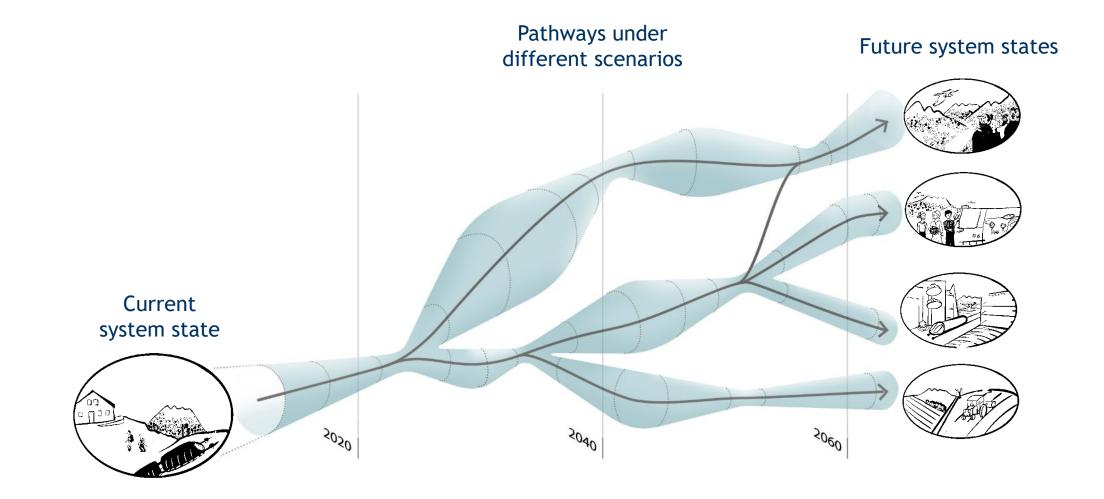
INTERNATIONAL MOUNTAIN CONFERENCE SEPTEMBER 11 - 15 2022

>> SYNTHESIZE MOUNTAINS OF KNOWLEDGE <<

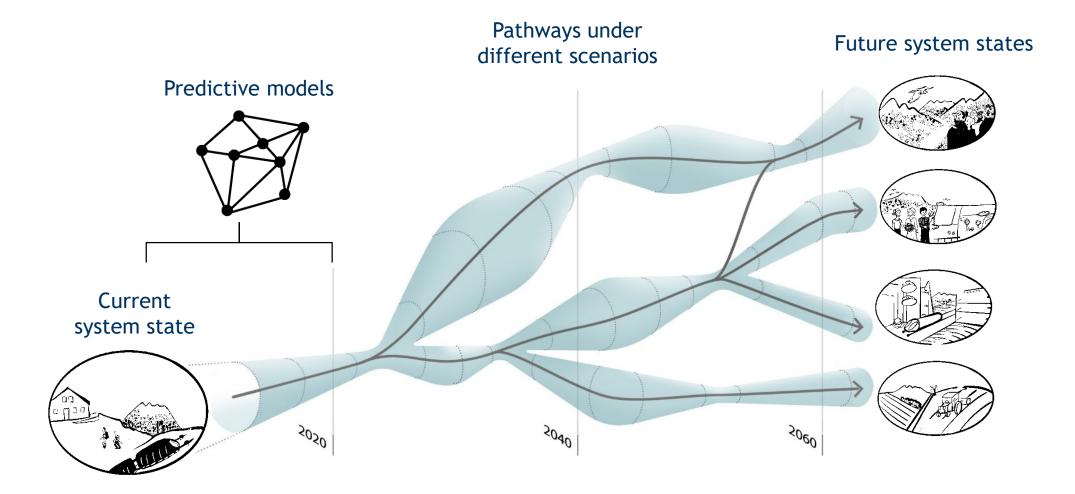
Focus Session 52 Pathways towards nature-based adaptation and transformation in mountains

Characterising non-stationarity in predictive models of land use in Swiss mountain parks to inform scenarios for deliberative transformation.

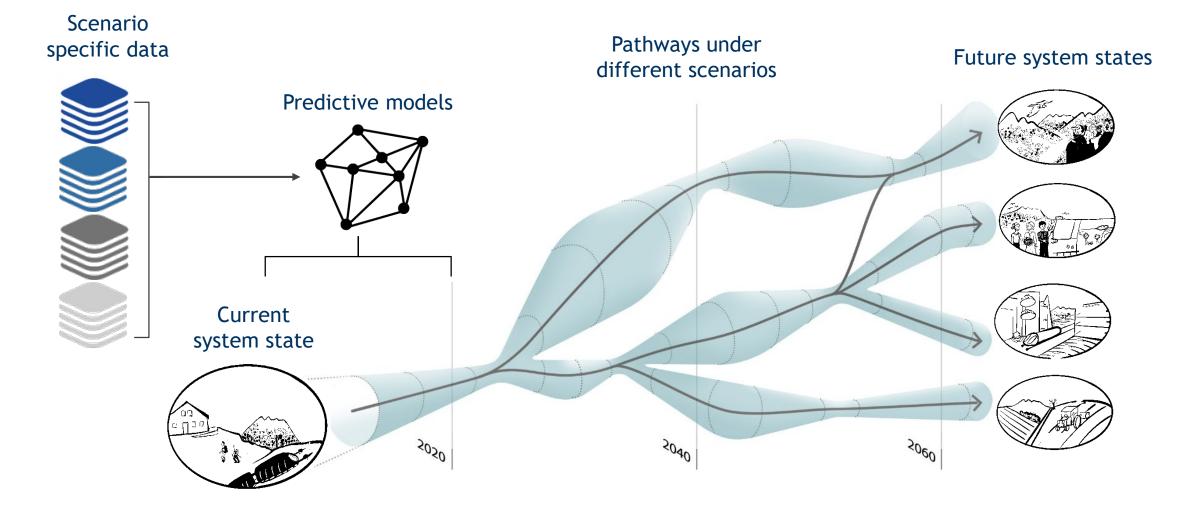
Benjamin Black, Sergio Wicki & Prof. Dr. Adrienne Grêt-Regamey Planning of Landscape and Urban Systems, Swiss Federal Institute of Technology (ETH)



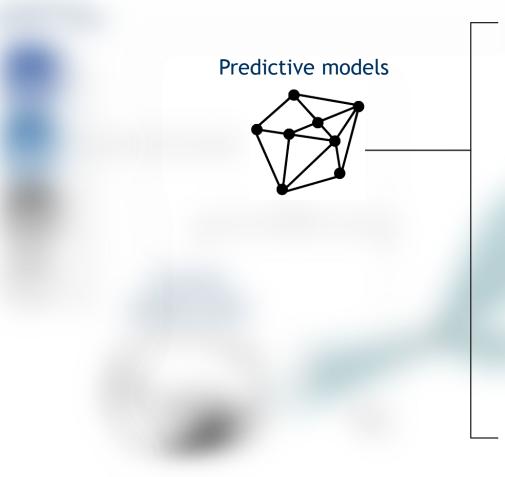
Ę



Ę

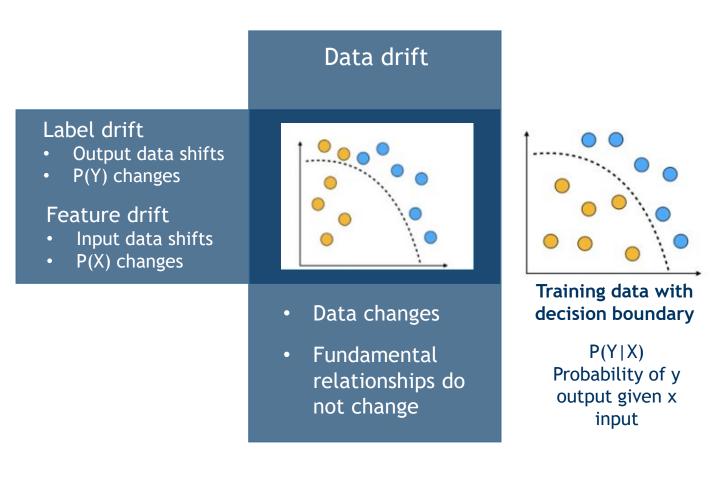


Ļ

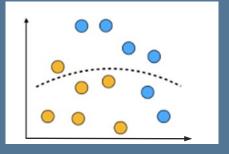


- Models are trained on historic data
- Assumption: Relationships remain stationary in time
- **BUT:** With multiple historical periods we can quantitatively demonstrate non-stationarity
- **Problem:** Non-stationarity will led to decreased model performance + increased uncertainty of predictions
- No solution only mitigation: Characterize nonstationarity and address in modelling/scenarios

Characterizing Non-stationarity



Concept drift



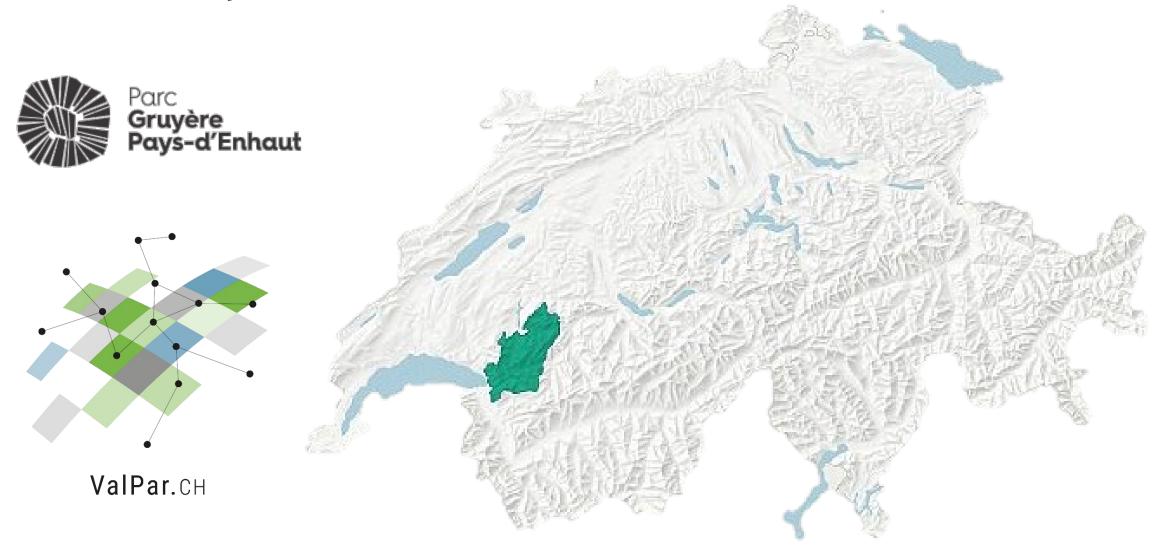
- Reality/behavioral change
- Relationships (i.e. P(Y|X)) change not the input

Figure adapted from Hodler 2022

Ę

Case study

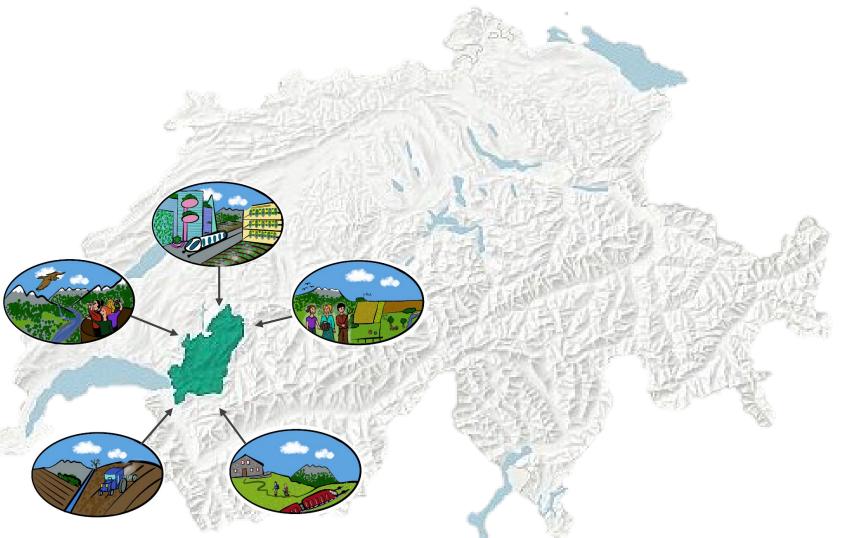
Ē



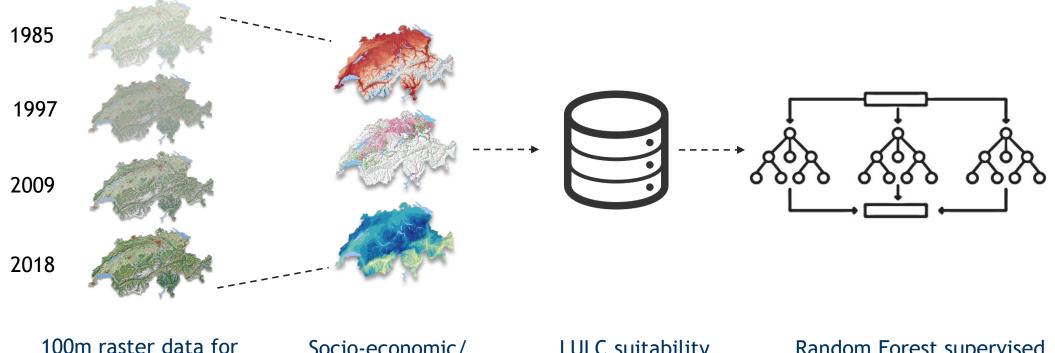
Case study

Scenarios:

- Biodiversity-promoting Switzerland
- Switzerland with diverging rural and urban areas
 - Switzerland with conditions for a desired future of Ecological Infrastructure



Land use land cover (LULC) modelling



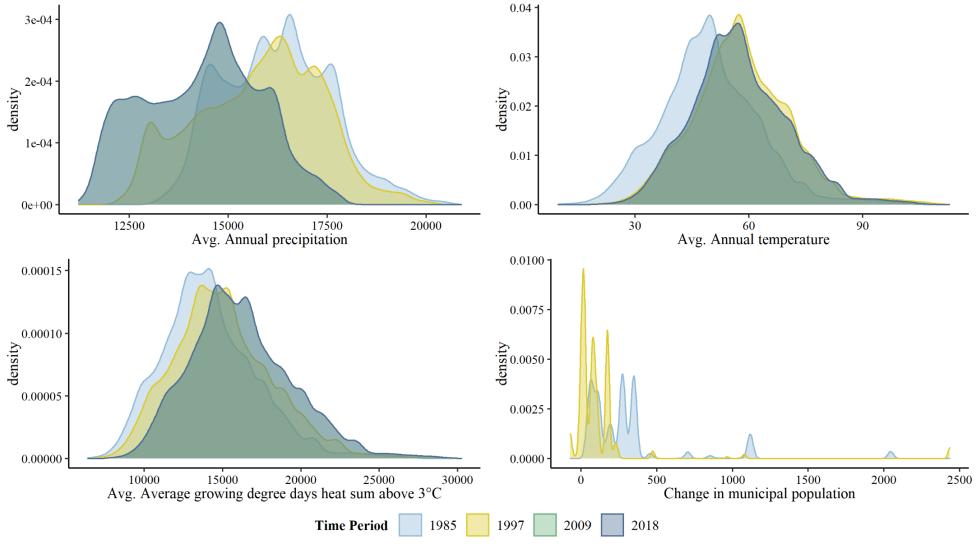
4 time points, aggregated to 10 LULC classes Socio-economic/ biophysical/ LULC focal predictors LULC suitability datasets for each time period (40) Random Forest supervised classification model for each dataset

Label drift

Coverage of LULC classes as % of total area of park Gruyère Pays-d'Enhaut

LULC class	1985	1997	2009	2018	Avg. % difference
Urban	1.16	1.38	1.5	1.63	0.157
Static	7.23	7.19	6.91	6.77	0.153
Open Forest	6.67	6.77	8.53	7.97	0.433
Closed Forest	31.48	33.01	31.91	32.87	0.463
Shrubland	8.32	7.91	7.76	7.78	0.180
Intensive Agriculture	0.26	0.27	0.12	0.11	0.050
Alpine Pasture	35.1	34.13	33.88	33.6	0.500
Grassland	9.7	9.28	9.35	9.23	0.157
Permanent crops	0.08	0.06	0.04	0.03	0.017

Feature drift



Change in average prediction probability of

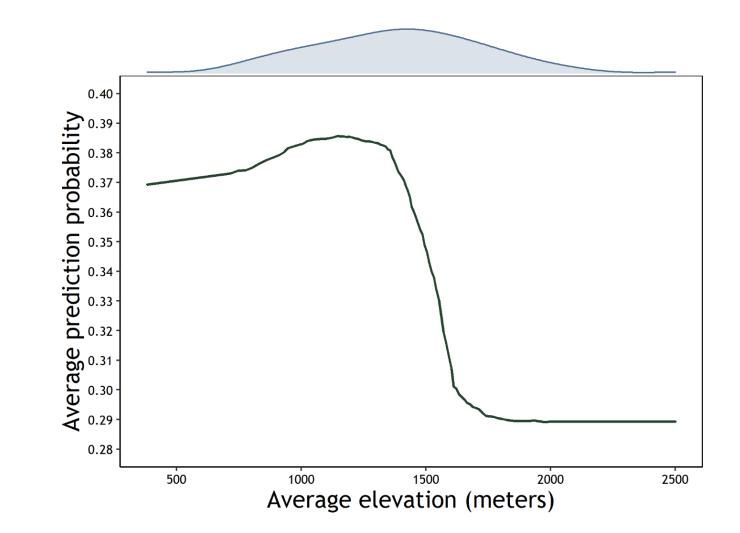
dependent variable across the values of a single predictor

How can we quantify?: Partial

dependence plots (PDPs)

Concept drift

 Marginalized over all predictors i.e aggregation of all instances



Ben Black ETH Zurich

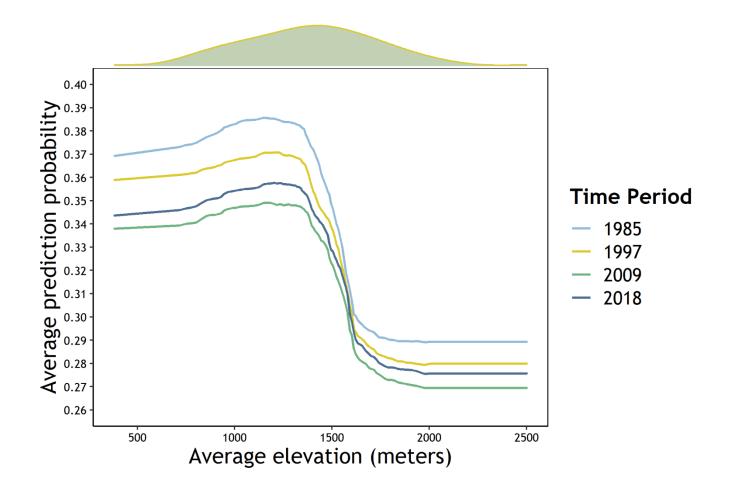
13

Concept drift

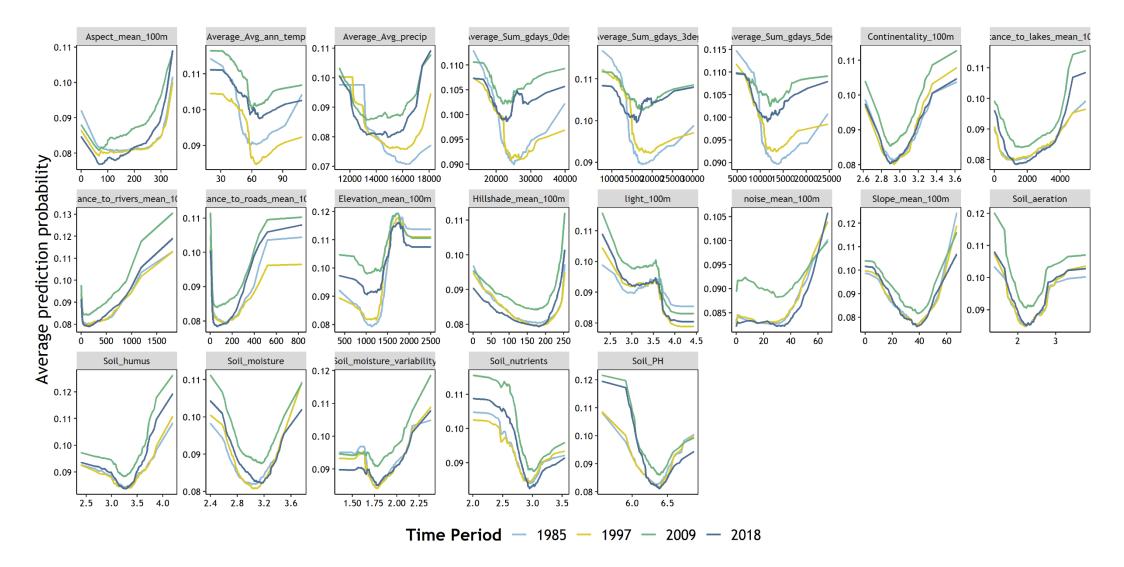
F

How can we quantify?: Partial dependence plots (PDPs)

- Change in average prediction probability of dependent variable across the values of a single predictor
- Marginalized over all predictors i.e aggregation of all instances



Ē



Concept drift

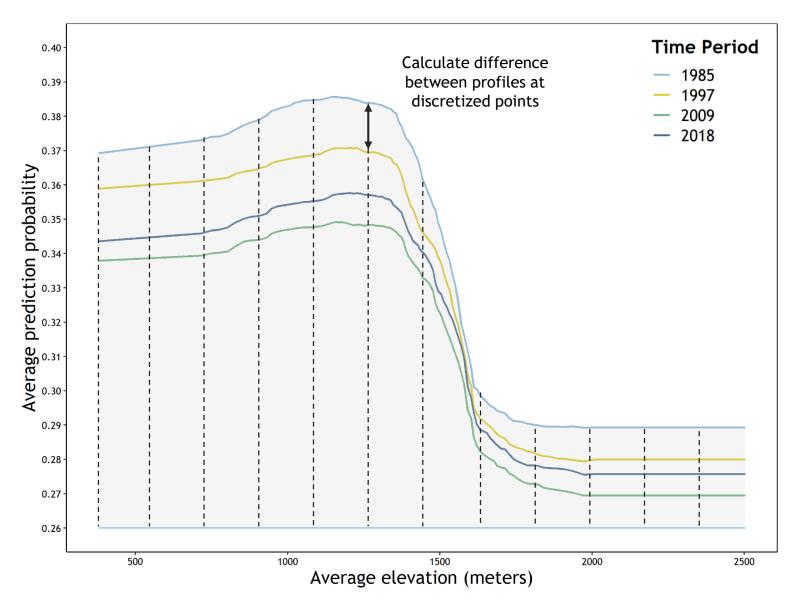
Ļ

Model drift = Square root of the mean square difference(RMSD) between the PD profiles

- Requires profiles to be discretized
 - Unitless
- Minimum value of RMSD = 0 (perfectly overlapping profiles)

Biecek and Pękala 2022

Ben Black ETH Zurich

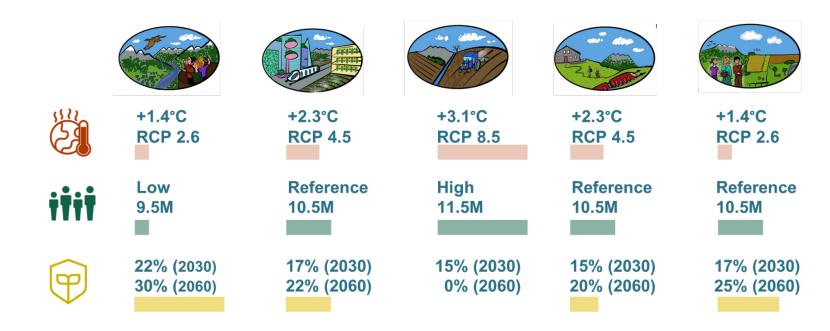


Concept drift

- Average drift across time periods as compared to final period (2009-2018)
- Large range of drift values between predictors
- Consistency in highest drift predictors across LULC classes

Implications for scenarios

- Scenarios for deliberative transformation simulated topdown (i.e. planned changes to specific aspects in the system)
- Proscribing changes often based on historically characterized relationships
- Ignoring change in these relationships (exemplified by concept drift) increases uncertainty of results = flawed recommendations.



l,≡

Implications for modellers

- During calibration, detect drift and adapt predictive models to mitigate
- Temporal drift: Numerous adaptations to popular ML algorithms: Streaming Random Forests (Abdulsalam et al. 2011)
- Spatial drift: regionalized modelling
- Further research needed

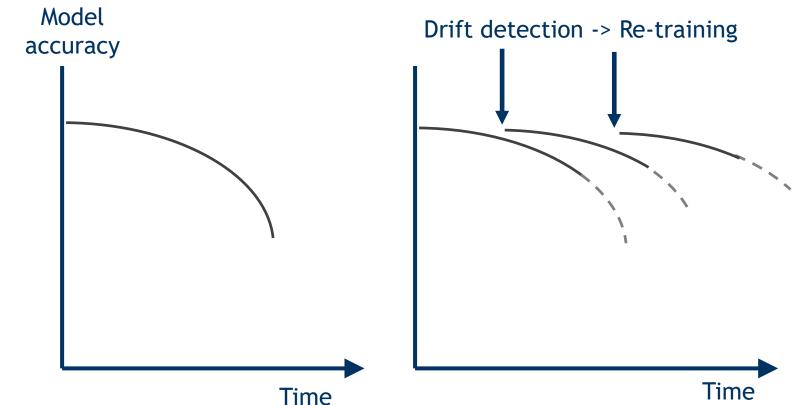
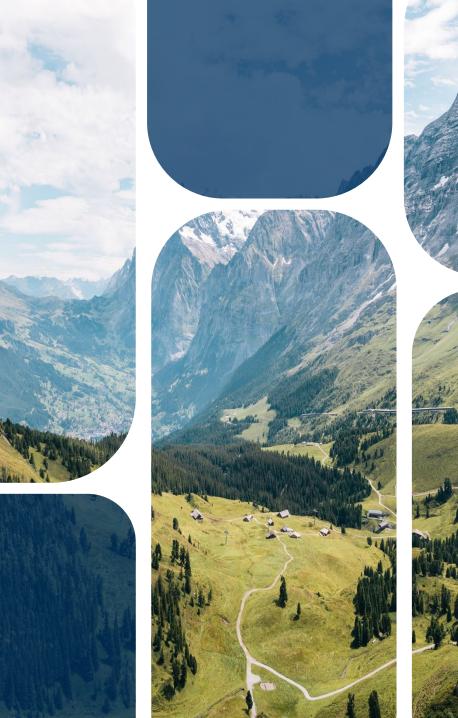


Figure adapted from Dral and Samuylova 2020

Ļ



Thank you for listening

I will now take any questions.

https://plus.ethz.ch/

ValPar.CH https://valpar.ch/index_de.php

https://www.researchgate.net/prof ile/Benjamin-Black-5

@Blen_Back

References

Abdulsalam, H., Skillicorn, D.B., Martin, P., 2011. Classification Using Streaming Random Forests. IEEE Transactions on Knowledge and Data Engineering 23, 22–36. <u>https://doi.org/10.1109/TKDE.2010.36</u>

Biecek, P., Pękala, K., 2022. drifter: Concept Drift and Concept Shift Detection for Predictive Models. Model Oriented.

Dral, E., Samuylova, E., 2020. Machine Learning Monitoring, Part 5: Why You Should Care About Data and Concept Drift. URL https://evidentlyai.com/blog/machine-learning-monitoring-data-and-concept-drift (accessed 9.6.22).

Hodler, A., 2022. Drift in Machine Learning: How to Identify Issues Before You Have a Problem | Fiddler AI Blog. URL https://www.fiddler.ai/blog/drift-in-machine-learning-how-to-identify-issues-before-you-have-a-problem (accessed 8.25.22).

